skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Cenlin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Abstract. The Congo Basin in Central Africa is one of three convective centers in the tropics, characterized by a high proportion of precipitation produced by mesoscale convective systems (MCSs). However, process-level understanding of these systems and their relationship to environmental factors over the Congo Basin remains unclear, largely due to scarce in-situ observations. This study employs the Model for Prediction Across Scales–Atmosphere (MPAS-A), a global cloud-resolving model, to investigate MCSs in this region. Compared to satellite-observed brightness temperature (Tb), MPAS-A realistically simulates key MCS features, allowing a detailed comparison between two mesoscale convective complex (MCC) cases: one over the southern mountainous region (MCC-south) and the other over the northern lowland forests (MCC-north). MCC-south is larger, longer-lived, and moves a longer distance than MCC-north. Our analysis shows that MCC-south is supported by higher thermodynamic energy and more favorable vertical wind shear ahead of the system. The shear extends up to 400 km, explains up to 65 % of the Tb variance, and is well balanced by a moderately strong cold pool. In contrast, MCC-north features weaker, localized shear near the center and a stronger cold pool. The African Easterly Jet helps maintain the shear in both cases, but an overly strong jet may suppress low-level westerlies and weaken convection. These results show how latitude and topography modulate environmental influences on Congo Basin MCS developments. The findings underscore the value of global cloud-resolving models in data-sparse regions for understanding convective systems and their impacts on weather extremes and societal risks. 
    more » « less
    Free, publicly-accessible full text available August 25, 2026
  3. Free, publicly-accessible full text available June 1, 2026
  4. Free, publicly-accessible full text available August 1, 2026
  5. Free, publicly-accessible full text available August 1, 2026
  6. The IPCC’s Special Report on Climate Change and Cities shows how cities must adapt to climate risks. Urban planners need to create solutions that fit each city’s needs, enhancing urban adaptability and resilience in the context of increasing climate-related risks. Sustainable urban planning, increased citizen awareness, and resilient infrastructure design are crucial in mitigating the growing impacts of climate change on human settlements. Addressing these challenges requires the integration of perspectives from diverse disciplines, including the natural sciences, social sciences, and engineering fields. This article draws on insights from a collaborative effort among experts in these areas, promoting a more coordinated and interdisciplinary approach. By bridging this expertise, we aim to advance resilience practices and awareness, fostering effective urban climate solutions in Texas and beyond. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  7. Fires in the wildland-urban interface (WUI) are a global issue with growing importance. However, the impact of WUI fires on air quality and health is less understood compared to that of fires in wildland. We analyze WUI fire impacts on air quality and health at the global scale using a multi-scale atmospheric chemistry model—the Multi-Scale Infrastructure for Chemistry and Aerosols model (MUSICA). WUI fires have notable impacts on key air pollutants [e.g., carbon monoxide (CO), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and ozone (O3)]. The health impact of WUI fire emission is disproportionately large compared to wildland fires primarily because WUI fires are closer to human settlement. Globally, the fraction of WUI fire–caused annual premature deaths (APDs) to all fire–caused APDs is about three times of the fraction of WUI fire emissions to all fire emissions. The developed model framework can be applied to address critical needs in understanding and mitigating WUI fires and their impacts. 
    more » « less
    Free, publicly-accessible full text available March 14, 2026
  8. Abstract. We quantify future changes in wildfire burned area and carbon emissions inthe 21st century under four Shared Socioeconomic Pathways (SSPs) scenariosand two SSP5-8.5-based solar geoengineering scenarios with a target surfacetemperature defined by SSP2-4.5 – solar irradiance reduction (G6solar) andstratospheric sulfate aerosol injections (G6sulfur) – and explore themechanisms that drive solar geoengineering impacts on fires. This study isbased on fully coupled climate–chemistry simulations with simulatedoccurrence of fires (burned area and carbon emissions) using the WholeAtmosphere Community Climate Model version 6 (WACCM6) as the atmosphericcomponent of the Community Earth System Model version 2 (CESM2). Globally,total wildfire burned area is projected to increase over the 21st centuryunder scenarios without geoengineering and decrease under the twogeoengineering scenarios. By the end of the century, the two geoengineeringscenarios have lower burned area and fire carbon emissions than not onlytheir base-climate scenario SSP5-8.5 but also the targeted-climate scenarioSSP2-4.5. Geoengineering reduces wildfire occurrence by decreasing surfacetemperature and wind speed and increasing relative humidity and soil water,with the exception of boreal regions where geoengineering increases theoccurrence of wildfires due to a decrease in relative humidity and soilwater compared with the present day. This leads to a global reduction in burnedarea and fire carbon emissions by the end of the century relative to theirbase-climate scenario SSP5-8.5. However, geoengineering also yieldsreductions in precipitation compared with a warming climate, which offsetssome of the fire reduction. Overall, the impacts of the different drivingfactors are larger on burned area than fire carbon emissions. In general,the stratospheric sulfate aerosol approach has a stronger fire-reducingeffect than the solar irradiance reduction approach. 
    more » « less